www.欧美,中文字幕综合,中文字幕av无码一区二区三区电影,亚洲av无码av男人的天堂

Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag.

講座論壇

  • 首頁  講座論壇  國(境)外文教專家系列講座
  • 國(境)外文教專家系列講座一百七十六講-鞠立力:A Deep Learning Method for the Dynamics of Classic and Conservative Allen-Chan equations based on Fully-Discrete Operators

    作者:發(fā)布時間:2023-06-16來源:中國海洋大學(xué) 字號:

    一、主講人介紹:趙雁翔教授

    鞠立力教授1995年畢業(yè)于武漢大學(xué)數(shù)學(xué)系獲數(shù)學(xué)學(xué)士學(xué)位,1998年在中國科學(xué)院計算數(shù)學(xué)與科學(xué)工程計算研究所獲得計算數(shù)學(xué)碩士學(xué)位,2002年在美國愛荷華州立大學(xué)獲得應(yīng)用數(shù)學(xué)博士學(xué)位。2002-2004年在美國明尼蘇達大學(xué)數(shù)學(xué)與應(yīng)用研究所從事博士后研究。隨后進入美國南卡羅萊納大學(xué)工作,歷任數(shù)學(xué)系助理教授(2004-2008),副教授(2008-2012),和教授(2013-現(xiàn)在)。主要從事偏微分方程數(shù)值方法與分析,非局部模型與算法,計算機視覺,深度學(xué)習(xí)算法,高性能科學(xué)計算,及其在材料與地球科學(xué)中的應(yīng)用等方面的研究工作。至今已發(fā)表科研論文140多篇,Google學(xué)術(shù)引用5000多次。自2006年起連續(xù)主持了十多項由美國國家科學(xué)基金會和能源部資助的科研項目。20122017年擔(dān)任SIAM Journal on Numerical Analysis的副編輯,目前是JSC, NMPDE, NMTMA, AAMM等期刊的副編輯。與合作者關(guān)于合金微結(jié)構(gòu)演化在“神威·太湖之光”超級計算機上的相場模擬工作入圍2016年國際高性能計算應(yīng)用領(lǐng)域“戈登·貝爾”獎提名。

     

    二、講座信息

    The Allen-Cahn equation is a well-known stiff semilinear parabolic partial differential equation (PDE) used to describe the process of phase separation and transition in multi-component physical systems, while the conservative Allen-Cahn equation is a modified version of the classic  Allen-Cahn equation that can additionally conserve the mass. As neural networks and deep learning techniques have achieved significant successes in recent years in scientific and engineering applications, there has been growing interest in developing deep learning algorithms for numerical solutions of PDEs.  In this paper, we propose  a deep learning method for predicting the dynamics of the classic and conservative Allen-Cahn equations. We design two types of convolutional neural network models, one for each of the Allen-Cahn equations, to learn the fully-discrete operators between two adjacent time steps. Specifically, the loss functions of the two models are defined using the residual of the fully-discrete systems, which result from applying the central finite difference discretization in space and the Crank–Nicolson approximation in time (second-order accurate in both time and space).  This approach enables us to train the models without requiring any ground-truth data. Moreover, we introduce a novel training strategy that automatically generates useful samples along the time evolution to facilitate effective training of the models. Finally, we conduct extensive experiments in two and three dimensions to demonstrate the outstanding performance of our proposed method, including its dynamics prediction and generalization ability under different scenarios.

    時間:202361409:00-10:00

    地點:數(shù)學(xué)院424會議室

     

    歡迎大家積極參加!

     

     

    中國海洋大學(xué)國際合作與交流處

    數(shù)學(xué)科學(xué)學(xué)院     

     


    文:
    圖:
    返回列表
    国产九九av| 无限观看日本动漫免费观看| 国产老妇女另类视频| 亚洲伦理一区二区三区| 骚货自慰免费看| 天堂资源在线| 中文字幕 精品一区| 欧美精品熟妇在线| 一炕四女被窝交换啪啪| 日本色黄视频在线看| 日日操夜夜操狠狠操| 日韩有码网站| 亚洲不卡高清五码| 亚洲熟女WWW一区二区三区| 免费视频x8x8| 亚洲精品无码久久久久久久 | 午夜免费无码| 噜噜熟女| 久久婷婷丁香五月天| 日本a v网址免费| 亚洲成AV人片在线观看ww| 亚洲AV夜夜| 国产成人AV网址| 久久成人小电影一区| 中文字幕精品在线| 欧洲老妇AV| 久久久国产极品美女| 亚洲一区二区精品久久AV| 一级在线A黄色20岁| 成人日韩在线| 中文日韩大片在线播放| 超碰97人人干| 喷水欧美| 国产69tv精品久久久久99| 中文蜜桃| 亚洲欧洲精品成人久久曰影片| 二月色网站| 五月激情久久综合| 狼友视频网站| 45AV人妻| 精品国产AV色欲果冻传媒|